Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Ecol Appl ; 34(1): e2826, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36840509

RESUMEN

Environmental DNA (eDNA) has increasingly been used to detect rare species (e.g., newly introduced nonindigenous species) in both terrestrial and aquatic ecosystems, often with distinct advantages over traditional methods. However, whether water eDNA signals can be used to inform invasion risks remains debatable owing to inherent uncertainties associated with the methods used and the varying conditions among study systems. Here, we sampled eDNA from canals of the central route of the South-to-North Water Diversion Project (hereafter SNWDP) in China to investigate eDNA distribution and efficacy to inform invasion risks in a unique lotic system. We first conducted a total of 16 monthly surveys in this system (two sites in the source reservoir and four sites in the main canal) to test if eDNA could be applied to detect an invasive, biofouling bivalve, the golden mussel Limnoperna fortunei. Second, we initiated a one-time survey in a sub-canal of the SNWDP using refined sampling (12 sites in ~22 km canal) and considered a few environmental predictors. We found that detection of target eDNA in the main canal was achieved up to 1100 km from the putative source population but was restricted to the warmer months (May-November). Detection probability exhibited a significant positive relationship with average daily minimum air temperature and with water temperature, consistent with the expected spawning season. eDNA concentration in the main canal generally fluctuated across months and sites and was generally higher in warmer months. Golden mussel eDNA concentration in the sub-canal decreased significantly with distance from the source and with increasing water temperature and became almost undetectable at ~22 km distance. Given the enormity of the SNWDP, golden mussels may eventually expand their distribution in the main canal, with established "bridgehead" populations facilitating further spread. Our findings suggest an elevated invasion risk of golden mussels in the SNWDP in warm months, highlighting the critical period for spread and, possibly, management.


Asunto(s)
Incrustaciones Biológicas , Bivalvos , ADN Ambiental , Animales , ADN Ambiental/genética , Agua , Ecosistema , Bivalvos/genética
2.
Ecol Appl ; 34(1): e2833, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36864716

RESUMEN

Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-ß-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.


Asunto(s)
Solidago , Contaminantes Químicos del Agua , Alelopatía , Durapatita/química , Carbón Orgánico/química , Suelo , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 877: 162803, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36914127

RESUMEN

The invasion of Spartina alterniflora has caused severe damage to the coastal wetland ecosystem of the Yellow River Delta, China. Flooding and salinity are key factors influencing the growth and reproduction of S. alterniflora. However, the differences in response of S. alterniflora seedlings and clonal ramets to these factors remain unclear, and it is not known how these differences affect invasion patterns. In this paper, clonal ramets and seedlings were studied separately. Through literature data integration analysis, field investigation, greenhouse experiments, and situational simulation, we demonstrated significant differences in the responses of clonal ramets and seedlings to flooding and salinity changes. Clonal ramets have no theoretical inundation duration threshold with a salinity threshold of 57 ppt (part per thousand); Seedlings have an inundation duration threshold of about 11 h/day and a salinity threshold of 43 ppt. The sensitivity of belowground indicators of two propagules-types to flooding and salinity changes was stronger than that of aboveground indicators, and it is significant for clones (P < 0.05). Clonal ramets have a larger potentially invadable area than seedlings in the Yellow River Delta. However, the actual invasion area of S. alterniflora is often limited by the responses of seedlings to flooding and salinity. In a future sea-level rise scenario, the difference in responses to flooding and salinity will cause S. alterniflora to further compress native species habitats. Our research findings can improve the efficiency and accuracy of S. alterniflora control. Management of hydrological connectivity and strict restrictions on nitrogen input to wetlands, for example, are potential new initiatives to control S. alterniflora invasion.


Asunto(s)
Ecosistema , Plantones , Salinidad , Ríos , Humedales , Poaceae/fisiología , China , Células Clonales , Especies Introducidas
4.
Ecol Evol ; 13(3): e9940, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36993150

RESUMEN

Empirical evidence shows that early arrival of native species, which induces the priority effects, can contribute to invasive plant species containment. However, more systematic studies are required to test the applied relevance of the priority effect. This study therefore aimed at testing the priority effects generated by different sowing times of seeds of nine native species on one target invasive plant species, that is, Giant ragweed (Ambrosia trifida). This study hypothesized that, when sown earlier, some native species will be able to substantially contain A. trifida through resource preemption. An additive competition design was used to test the competitive effects of native species on A. trifida. Depending on the sowing times of native and invasive plant species, three priority treatments were conducted: all species sown at the same time (T1); native species sown 3 weeks before A. trifida (T2); and native species sown 6 weeks before A. trifida (T3). Priority effects created by all nine native species significantly affected the invasibility of A. trifida. The average value of the relative competition index (RCIavg) of A. trifida was the highest when native seeds were sown 6 weeks early and decreased with decreasing early sowing time of native plants. The species identity effect was not significant on RCIavg if natives were sown at the same time or 3 weeks earlier than A. trifida invasion, but it was significant (p = .0123) if they were sown 6 weeks earlier than A. trifida. Synthesis and applications. The findings of this study clearly show that native species, when sown early, provide strong competition and resist invasion through prior utilization of resources. The consideration of this knowledge might improve A. trifida invasion management practices.

5.
Oecologia ; 200(1-2): 221-230, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36153377

RESUMEN

Sicyos angulatus is a serious threat to riverine ecosystem functions and services worldwide. Here, we studied the effect of species identity and diversity on biotic resistance to S. angulatus under two different soil nutrient levels (unfertilized vs. fertilized). Soil nutrient levels showed no significant effect on invasion by S. angulatus in the control treatment, where intervention by native plants was absent. Species identity of native plants and its interaction with soil nutrient levels had a significant effect on biotic resistance to S. angulatus. For instance, Pennisetum alopecuroides and Lespedeza cuneata best resisted invasion in fertilized soil, whereas Lespedeza bicolor and Lactuca indica best resisted invasion in unfertilized soil. In addition, a mixture of four plant species resisted invasion equally as well as the monoculture of a species in unfertilized soil, whereas the mixed treatment resisted invasion much better in fertilized soil compared with unfertilized soil. Structural equation modeling revealed that species identity and diversity as well as fertilizer application significantly influenced biotic resistance to S. angulatus invasion, while soil nutrients did not influence invasion success directly. Based on these results, we strongly suggest sowing seed mixtures of various species after eradicating S. angulatus plants to prevent re-invasion. Overall, these results demonstrate how native plants rely on resource availability to resist colonization by an invasive plant, such as S. angulatus. This information can be used for the development of improved guidelines for plant restoration and invasive species control.


Asunto(s)
Especies Introducidas , Suelo , Ecosistema , Fertilizantes , Nutrientes , Plantas , Suelo/química
6.
Sci Total Environ ; 835: 155391, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35461930

RESUMEN

Invasive alien species (IAS) are a major driver of global biodiversity loss, hampering conservation efforts and disrupting ecosystem functions and services. While accumulating evidence documented ecological impacts of IAS across major geographic regions, habitat types and taxonomic groups, appraisals for economic costs remained relatively sparse. This has hindered effective cost-benefit analyses that inform expenditure on management interventions to prevent, control, and eradicate IAS. Terrestrial invertebrates are a particularly pervasive and damaging group of invaders, with many species compromising primary economic sectors such as forestry, agriculture and health. The present study provides synthesised quantifications of economic costs caused by invasive terrestrial invertebrates on the global scale and across a range of descriptors, using the InvaCost database. Invasive terrestrial invertebrates cost the global economy US$ 712.44 billion over the investigated period (up to 2020), considering only high-reliability source reports. Overall, costs were not equally distributed geographically, with North America (73%) reporting the greatest costs, with far lower costs reported in Europe (7%), Oceania (6%), Africa (5%), Asia (3%), and South America (< 1%). These costs were mostly due to invasive insects (88%) and mostly resulted from direct resource damages and losses (75%), particularly in agriculture and forestry; relatively little (8%) was invested in management. A minority of monetary costs was directly observed (17%). Economic costs displayed an increasing trend with time, with an average annual cost of US$ 11.40 billion since 1960, but as much as US$ 165.01 billion in 2020, but reporting lags reduced costs in recent years. The massive global economic costs of invasive terrestrial invertebrates require urgent consideration and investment by policymakers and managers, in order to prevent and remediate the economic and ecological impacts of these and other IAS groups.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Biodiversidad , Invertebrados , Reproducibilidad de los Resultados
7.
Braz. j. biol ; 82: 1-8, 2022. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468439

RESUMEN

As a result of biodiversity and ecosystem service losses associated with biological invasions, there has been growing interest in basic and applied research on invasive species aiming to improve management strategies. Tradescantia zebrina is a herbaceous species increasingly reported as invasive in the understory of disturbed forest ecosystems. In this study, we assess the effect of spatial and seasonal variation on biological attributes of this species in the Atlantic Forest. To this end, we measured attributes of T. zebrina associated with plant growth and stress in the four seasons at the forest edge and in the forest interior of invaded sites in the Iguaçu National Park, Southern Brazil. The invasive plant had higher growth at the forest edge than in the forest interior and lower leaf asymmetry and herbivory in the winter than in the summer. Our findings suggest that the forest edge environment favours the growth of T. zebrina. This invasive species is highly competitive in the understory of semi-deciduous seasonal forests all over the year. Our study contributes to the management of T. zebrina by showing that the summer is the best season for controlling this species.


As perdas de biodiversidade e os seus serviços ecossistêmicos ocasionadas pelas invasões biológicas, têm despertado o interesse em pesquisas básicas e aplicadas sobre as espécies invasoras com o objetivo de buscar estratégias de manejo. Tradescantia zebrina é uma das herbáceas crescentemente relatadas como uma invasora no sub-bosque florestal de ecossistemas impactados. Neste estudo, nós estudamos o efeito da variação espacial e sazonal sobre atributos biológicos desta espécie na Floresta Atlântica. Assim, nós mensuramos atributos de T. zebrina associados com o crescimento vegetal e o estresse nas quatro estações do ano em borda e interior da floresta de locais invadidos no Parque Nacional do Iguaçu, Sul do Brasil. A planta invasora apresentou maior crescimento na borda florestal do que no interior. Adicionalmente, assimetria foliar e herbivoria obtidos no inverno foram menores quando comparados ao verão. Nossos achados sugerem que os ambientes de borda florestal favorecem o crescimento de T. zebrina. Esta espécie invasora é altamente competitiva no sub-bosque da Floresta Estacional Semidecídua durante o ano todo. Nosso estudo contribui com o manejo de T. zebrina mostrando que o verão é a melhor estação para o controle desta espécie.


Asunto(s)
Control de Malezas , Malezas/crecimiento & desarrollo , Tradescantia/crecimiento & desarrollo
8.
Braz. j. biol ; 822022.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468626

RESUMEN

Abstract As a result of biodiversity and ecosystem service losses associated with biological invasions, there has been growing interest in basic and applied research on invasive species aiming to improve management strategies. Tradescantia zebrina is a herbaceous species increasingly reported as invasive in the understory of disturbed forest ecosystems. In this study, we assess the effect of spatial and seasonal variation on biological attributes of this species in the Atlantic Forest. To this end, we measured attributes of T. zebrina associated with plant growth and stress in the four seasons at the forest edge and in the forest interior of invaded sites in the Iguaçu National Park, Southern Brazil. The invasive plant had higher growth at the forest edge than in the forest interior and lower leaf asymmetry and herbivory in the winter than in the summer. Our findings suggest that the forest edge environment favours the growth of T. zebrina. This invasive species is highly competitive in the understory of semi-deciduous seasonal forests all over the year. Our study contributes to the management of T. zebrina by showing that the summer is the best season for controlling this species.


Resumo As perdas de biodiversidade e os seus serviços ecossistêmicos ocasionadas pelas invasões biológicas, têm despertado o interesse em pesquisas básicas e aplicadas sobre as espécies invasoras com o objetivo de buscar estratégias de manejo. Tradescantia zebrina é uma das herbáceas crescentemente relatadas como uma invasora no sub-bosque florestal de ecossistemas impactados. Neste estudo, nós estudamos o efeito da variação espacial e sazonal sobre atributos biológicos desta espécie na Floresta Atlântica. Assim, nós mensuramos atributos de T. zebrina associados com o crescimento vegetal e o estresse nas quatro estações do ano em borda e interior da floresta de locais invadidos no Parque Nacional do Iguaçu, Sul do Brasil. A planta invasora apresentou maior crescimento na borda florestal do que no interior. Adicionalmente, assimetria foliar e herbivoria obtidos no inverno foram menores quando comparados ao verão. Nossos achados sugerem que os ambientes de borda florestal favorecem o crescimento de T. zebrina. Esta espécie invasora é altamente competitiva no sub-bosque da Floresta Estacional Semidecídua durante o ano todo. Nosso estudo contribui com o manejo de T. zebrina mostrando que o verão é a melhor estação para o controle desta espécie.

9.
Braz. j. biol ; 82: e238403, 2022. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1180733

RESUMEN

As a result of biodiversity and ecosystem service losses associated with biological invasions, there has been growing interest in basic and applied research on invasive species aiming to improve management strategies. Tradescantia zebrine is a herbaceous species increasingly reported as invasive in the understory of disturbed forest ecosystems. In this study, we assess the effect of spatial and seasonal variation on biological attributes of this species in the Atlantic Forest. To this end, we measured attributes of T. zebrina associated with plant growth and stress in the four seasons at the forest edge and in the forest interior of invaded sites in the Iguaçu National Park, Southern Brazil. The invasive plant had higher growth at the forest edge than in the forest interior and lower leaf asymmetry and herbivory in the winter than in the summer. Our findings suggest that the forest edge environment favours the growth of T. zebrina. This invasive species is highly competitive in the understory of semi-deciduous seasonal forests all over the year. Our study contributes to the management of T. zebrina by showing that the summer is the best season for controlling this species.


As perdas de biodiversidade e os seus serviços ecossistêmicos ocasionadas pelas invasões biológicas, têm despertado o interesse em pesquisas básicas e aplicadas sobre as espécies invasoras com o objetivo de buscar estratégias de manejo. Tradescantia zebrina é uma das herbáceas crescentemente relatadas como uma invasora no sub-bosque florestal de ecossistemas impactados. Neste estudo, nós estudamos o efeito da variação espacial e sazonal sobre atributos biológicos desta espécie na Floresta Atlântica. Assim, nós mensuramos atributos de T. zebrina associados com o crescimento vegetal e o estresse nas quatro estações do ano em borda e interior da floresta de locais invadidos no Parque Nacional do Iguaçu, Sul do Brasil. A planta invasora apresentou maior crescimento na borda florestal do que no interior. Adicionalmente, assimetria foliar e herbivoria obtidos no inverno foram menores quando comparados ao verão. Nossos achados sugerem que os ambientes de borda florestal favorecem o crescimento de T. zebrina. Esta espécie invasora é altamente competitiva no sub-bosque da Floresta Estacional Semidecídua durante o ano todo. Nosso estudo contribui com o manejo de T. zebrina mostrando que o verão é a melhor estação para o controle desta espécie.


Asunto(s)
Ecosistema , Tradescantia , Árboles , Brasil , Bosques
10.
J Appl Ecol ; 58(8): 1621-1630, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34588705

RESUMEN

The management of biological invasions is a worldwide conservation priority. Unfortunately, decision-making on optimal invasion management can be impeded by lack of information about the biological processes that determine invader success (i.e. biological uncertainty) or by uncertainty about the effectiveness of candidate interventions (i.e. operational uncertainty). Concurrent assessment of both sources of uncertainty within the same framework can help to optimize control decisions.Here, we present a Value of Information (VoI) framework to simultaneously analyse the effects of biological and operational uncertainties on management outcomes. We demonstrate this approach with a case study: minimizing the long-term population growth of musk thistle Carduus nutans, a widespread invasive plant, using several insects as biological control agents, including Trichosirocalus horridus, Rhinocyllus conicus and Urophora solstitialis.The ranking of biocontrol agents was sensitive to differences in the target weed's demography and also to differences in the effectiveness of the different biocontrol agents. This finding suggests that accounting for both biological and operational uncertainties is valuable when making management recommendations for invasion control. Furthermore, our VoI analyses show that reduction of all uncertainties across all combinations of demographic model and biocontrol effectiveness explored in the current study would lead, on average, to a 15.6% reduction in musk thistle population growth rate. The specific growth reduction that would be observed in any instance would depend on how the uncertainties actually resolve. Resolving biological uncertainty (across demographic model combinations) or operational uncertainty (across biocontrol effectiveness combinations) alone would reduce expected population growth rate by 8.5% and 10.5% respectively.Synthesis and applications. Our study demonstrates that intervention rank is determined both by biological processes in the targeted invasive populations and by intervention effectiveness. Ignoring either biological uncertainty or operational uncertainty may result in a suboptimal recommendation. Therefore, it is important to simultaneously acknowledge both sources of uncertainty during the decision-making process in invasion management. The framework presented here can accommodate diverse data sources and modelling approaches, and has wide applicability to guide invasive species management and conservation efforts.

11.
J Environ Manage ; 294: 113054, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34144321

RESUMEN

Why do some alien plants become naturalized, and some naturalized become invasive? Do different factors determine successful naturalization and invasion? Most, if not all, studies addressing these questions have focused either on the part of the invasion continuum or a specific group of alien species. In this study, we aimed to answer these questions for alien plant invasion in India by considering 13 variables related to biogeography, introduction pathways, uses, functional traits, and distribution for 715 species belonging to three invasion categories. We deciphered the variables' influence on successful naturalization and invasion through a structural equation modeling framework implemented as path analyses and translated the findings to management implications. Our study revealed that the invasive aliens had significantly higher naturalized range size, a greater number of uses, and higher specific leaf area than the naturalized and casual aliens. Path analyses revealed that the native and naturalized range sizes, number of uses, and growth form had a direct influence on naturalization success, whereas longer minimum residence time (MRT) facilitated overcoming of the dispersal barrier for naturalized species. Invasion success was directly influenced by the MRT and number of uses, which were further influenced by the number of native congeners and the naturalized range size, respectively. Plant growth forms indirectly influenced invasion success, whereas the native range sizes had indirect effects on successful naturalization and invasion by strongly influencing the size of the naturalized range. Our findings suggested considering species biogeography in the formulation of quarantine measures, imposing policies to discourage the uses and spread of alien plants within the country, and implementing early control measures, especially for the naturalized aliens. The curated dataset used in this study would also provide a ready reference for future research and decision-making towards the management of alien plant invasion in the country.


Asunto(s)
Ecosistema , Especies Introducidas , India , Desarrollo de la Planta , Plantas
12.
J Environ Manage ; 266: 110559, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32314742

RESUMEN

Despite increasing concerns about the global threat of cordgrass (S. alterniflora) expansion and the interest in its invasion mechanisms, there is not yet a general understanding of the mechanistic processes underlying the interaction between cordgrass invasion and geomorphic structures such as tidal channels. This study elucidated the effects of the hydrodynamic disturbance of tidal channels on initial seedling establishment of cordgrass in the margins of two different types of tidal channels (i.e., main tidal channels and secondary tributaries). We performed field experiments that transplanted cordgrass seedlings to above-mentioned tidal channel margins with on-site controlled hydrodynamic conditions. The results showed that high hydrodynamic disturbance intensity (i.e., HDI) on the margin of main tidal channels (i.e., MMC) was not beneficial to cordgrass invasion, whereas low HDI created windows of opportunity for cordgrass invasion to the margin of secondary tributaries (i.e., MST) by facilitating the survival, growth, and stability of cordgrass seedlings. The presence of high HDI predominantly reduced the seedling survival and total biomass of cordgrass, whereas root biomass allocation of cordgrass increased significantly to resist dislodgment and toppling. Moreover, field investigations showed that soil salinity and moisture in the margin of tidal channels were not the limiting factors affecting the establishment of cordgrass seedlings. However, higher propagule pressure combined with suitable soil salinity-moisture conditions (i.e., low salinity and high moisture) laid a firm foundation favoring seedling establishment. Our results highlight the importance of hydrodynamic disturbance as a dominating driver regulating seedling establishment of cordgrass in tidal channel margins and the potential implications for controlling cordgrass landward invasions.


Asunto(s)
Poaceae , Plantones , Hidrodinámica , Salinidad , Suelo
13.
Ecol Evol ; 9(13): 7562-7573, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31346422

RESUMEN

AIM: Tree invasions are a threat to biodiversity conservation, and although it is hard to predict the future spread of invasive tree species, there are tools available which could allow some estimations. The magnitude of spatial spread (a proxy of invasiveness) can be predicted from species climatic requirement (climatic niche) and can be represented by species distribution models (SDMs). We aimed to assess whether Acacia dealbata conserves its niche in the new environment of south-central Chile, and also, to estimate the invasive stage of the species. LOCATION: South-central area of Chile, between the O'Higgins (34°0″0'S) and Aysen Regions (47°0″0'S). METHODS: We used a combination of global, native, and regional data to improve the estimation of the potential distribution of A. dealbata, which has been considered one of the most invasive species of the genus, being registered in at least 34 countries in all the Continents. RESULTS: Our results show that A. dealbata does not conserve its niche in the study area, invading areas with climatic conditions different from those of the native range. It is also not at equilibrium with the environment. According to the global versus regional SDM comparisons, populations present in south-central Chile present different invasion stages. There are some stable populations, but there are other populations colonizing new areas, occupying unsuitable habitats and some of them are adapting to new climatic conditions. Climatic factors, such as precipitation seasonality, could be acting behind the expansion to new environments, and biotic factors or dispersal limitations could be preventing the species to colonize suitable areas. MAIN CONCLUSIONS: The invasion process of A. dealbata is far from stabilizing, and management options should focus on prevention, avoiding, for example, the introduction of the species to Patagonia where the species has not spread yet. More research is needed to complement our results and enhance the development of effective management strategies.

14.
J Environ Manage ; 229: 57-66, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30017110

RESUMEN

Tree invasions are increasing globally, causing major problems for biodiversity, ecosystem services and human well-being. In South America, conifer invasions occur across many ecosystems and while numerous studies address the ecological consequences of these invasions, little is known about social perceptions and people's attitudes toward their control. The social perceptions on the effect of invasive conifers can include recreational, cultural and conservation dimensions. This study, conducted in the Malalcahuello National Reserve, aims to assess visitor's perception about invasive pines (Pinus spp.) and their effects on the endangered Araucaria araucana forests and determine their willingness to pay for pine control. We used a questionnaire to survey visitors to the reserve in both winter and summer (n = 138 for each season). When confronted with six images of araucaria and pine forests with and without snow, visitors consistently preferred landscapes without pines and disliked those completely dominated by pines the most. Almost half, 46.5%, of the visitors expressed their willingness to pay (WTP) for pine control and after given a brief explanation about pine impacts, this number rose to 79%. Visitors who said they were unwilling to pay argue ethical, aesthetic and pragmatic considerations relating closely to a number of social value systems and beliefs. Our study shows that there is a high variation in how people assess the threat of invasive pine species in natural areas, but education even in a very brief format can help to increase awareness of the problem and build social and financial support for its control.


Asunto(s)
Especies Introducidas , Pinus , Biodiversidad , Bosques , Humanos , Percepción , Estaciones del Año , América del Sur , Árboles
15.
AoB Plants ; 82016.
Artículo en Inglés | MEDLINE | ID: mdl-27519914

RESUMEN

Invasive trees are generally seen as ecosystem-transforming plants that can have significant impacts on native vegetation, and often require management and control. Understanding their history and biology is essential to guide actions of land managers. Here, we present a summary of recent research into the ecology, phylogeography and management of invasive olives, which are now established outside of their native range as high ecological impact invasive trees. The parallel invasion of European and African olive in different climatic zones of Australia provides an interesting case study of invasion, characterized by early genetic admixture between domesticated and wild taxa. Today, the impact of the invasive olives on native vegetation and ecosystem function is of conservation concern, with European olive a declared weed in areas of South Australia, and African olive a declared weed in New South Wales and Pacific islands. Population genetics was used to trace the origins and invasion of both subspecies in Australia, indicating that both olive subspecies have hybridized early after introduction. Research also indicates that African olive populations can establish from a low number of founder individuals even after successive bottlenecks. Modelling based on distributional data from the native and invasive range identified a shift of the realized ecological niche in the Australian invasive range for both olive subspecies, which was particularly marked for African olive. As highly successful and long-lived invaders, olives offer further opportunities to understand the genetic basis of invasion, and we propose that future research examines the history of introduction and admixture, the genetic basis of adaptability and the role of biotic interactions during invasion. Advances on these questions will ultimately improve predictions on the future olive expansion and provide a solid basis for better management of invasive populations.

16.
Ecol Evol ; 4(11): 2115-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25360253

RESUMEN

Attempts to investigate the drivers of invasion success are generally limited to the biological and evolutionary traits distinguishing native from introduced species. Although alien species introduced to the same recipient environment differ in their invasion intensity - for example, some are "strong invaders"; others are "weak invaders" - the factors underlying the variation in invasion success within alien communities are little explored. In this study, we ask what drives the variation in invasion success of alien mammals in South Africa. First, we tested for taxonomic and phylogenetic signal in invasion intensity. Second, we reconstructed predictive models of the variation in invasion intensity among alien mammals using the generalized linear mixed-effects models. We found that the family Bovidae and the order Artiodactyla contained more "strong invaders" than expected by chance, and that such taxonomic signal did not translate into phylogenetic selectivity. In addition, our study indicates that latitude, gestation length, social group size, and human population density are only marginal determinant of the variation in invasion success. However, we found that evolutionary distinctiveness - a parameter characterising the uniqueness of each alien species - is the most important predictive variable. Our results indicate that the invasive behavior of alien mammals may have been "fingerprinted" in their evolutionary past, and that evolutionary history might capture beyond ecological, biological and life-history traits usually prioritized in predictive modeling of invasion success. These findings have applicability to the management of alien mammals in South Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...